

Guide settoriali art. 15 del D.M. 11/01/2017

- 2 II settore ceramico
- 3 Il settore della carta
- Il settore del vetro
- 5 Il settore della plastica
- 6 Produzione di energia termica e frigorifera
- Il servizio idrico integrato

Metodologia generale e fonte dati (1/2)

Estratto art.15

- descrizione delle migliori tecnologie disponibili
- potenzialità di risparmio
- individuazione del consumo di riferimento

La guida operativa di cui al comma 1, nonché i suoi **aggiornamenti** e le **integrazioni**, sono **approvati** e disciplinati con <u>decreto</u> del direttore generale (MEREEN) del MISE di concerto con il direttore generale (CLE) del MATTM.

Definizioni

Consumo di riferimento: «[...] consumo di energia primaria [...] attribuibile all'insieme di interventi realizzati con i sistemi o con le tecnologie che, alla data di presentazione del progetto costituiscono <u>l'offerta standard di mercato in termini tecnologici e/o lo standard minimo</u> fissato dalla normativa [...]»

Consumo di baseline: «[...] è dato dal minor valore tra il consumo antecedente alla realizzazione del progetto di efficienza [...]»

ATT: BREF, Guide Enea 2014, Analisi energetiche rappresentano una fotografia dell'installato e non dell'installabile.

Metodologia generale e fonte dati (2/2)

Metodologia

- 1. Analizzare banca dati GSE:
 - a) selezionare progetti a consuntivo dal 2012 a dicembre 2016;
 - b) clusterizzare i progetti per comparto industriale e tipologia di intervento;
 - c) individuare i settori con maggior numero di pratiche e titoli (affidabilità del dato);
 - d) individuare, per singolo settore ed intervento:
 - i. consumi specifici;
 - ii. variabili che influenzano i consumi specifici;
 - iii. algoritmo di correlazione tra consumi specifici e variabili (quando possibile).
- 2. Analizzare altre fonti individuando, per singolo settore ed intervento:
 - a) normative specifiche di settore;
 - b) schede tecniche di prodotto;
 - c) documentazione tecnica di settore;
 - d) diagnosi energetiche.
- 3. Confrontare i dati estratti dalla banca dati GSE e quelli derivanti dal punto 2.

- ✓ Interventi trasversali (illuminazione, produzione di energia frigo e termica, motori e inverter, compressori)
- ✓ Plastica (di cui presse e estrusori, 35%)
- Carta (di cui macchina continua 60%)
- Ceramica (di cui forni, essiccatori, atomizzatori, 45%)
- ✓ Vetro (di cui forni, 50%)
- ✓ SII (di cui depuratori, 50%)

Precisazione: le guide forniscono valori di riferimento per specifiche condizioni di esercizio. Qualora si ritenga ci siano altre condizioni di esercizio non indicate nelle guide settoriali che influenzino i valori di riferimento, sarà possibile proporre valori differenti fornendo adeguata documenta tecnica a supporto.

IL SETTORE CERAMICO

Il settore ceramico: interventi ammissibili e non

Nuova installazione/revamping:

- 1. Atomizzatori (bruciatori, abbattitore barbottina, migliore distribuzione aria)
- 2. Essiccatori (controllo e regolazione del gas in funzione dei fumi)
- 3. Forni (bruciatori, migliore distribuzione aria, recupero di calore da terzo camino)
- 4. Mulini
- Presse
- 6. Interventi trasversali (illuminazione, motori alta efficienza, compressori.

Non ammissibili:

- 1. Recuperi di calore da forni da primo e secondo camino
- Installazione di inverter

A prescindere dall'intervento saranno incentivati soltanto gli interventi per i quali sarà possibile verificare una diminuzione dei consumi specifici dei **componenti primari** rispetto ai valori di riferimento riportati nella presente Guida.

Interventi saranno valutati esclusivamente in relazione all'aumento dell'**efficienza energetica globale** del componente primario (atomizzatore, essiccatore e forno di cottura).

Tabella 1 del DM: recupero di calore, qualora non tecnicamente possibile nella situazione *ex ante*

Il settore ceramico: metodologia per la definizione dei consumi specifici di riferimento

Atomizzatori

- **consumi specifici termici :** valore medio del range dei consumi indicati nel "Rapporto integrato ambiente, energia, sicurezza-salute, qualità. ASSOPIASTRELLE SNAM, 1998".
- **consumi specifici elettrici:** valore medio del range dei consumi indicati nel Rapporto, ridotti del 5% per efficienza dei motori.

Essiccatori

- consumo specifico termico ex post (banca dati GSE) medio di interventi realizzati tra 2009-2014 (dato validato: progetti con consumi specifici ex ante analoghi 2014 -2016);
- **consumi specifici elettrici** ridotti del 10% il valore medio dei consumi riportati nel Rapporto (DM 29/01/2007 presenta valori decisamente inferiori).

Forni

- consumo specifico termico: gres porcellanato ex post (banca dati GSE) di forni 2010-2015 al netto dei modelli più performanti (Sacmi, modello EKO; SITI B&T; etc.) (dato validato: molti operatori hanno indicato come soluzione standard installabile al 2016 i forni Sacmi modello FMS-XTR). Monocottura chiara 10% al gres porcellanato come da schede tecniche costruttori. Monocottura rosa ,come da schede tecniche costruttori , uguale a gres porcellanato.
- consumo specifico elettrico: come sopra da banca dati GSE.

Presse

Valore più conservativo tra le presse ad alta efficienza più diffuse nel '98 (Rapporto).

Mulini

Valore medio del range dei consumi riportati nel Rapporto ridotti del 5%.

Il settore ceramico: consumi specifici di riferimento

Principali variabili che influenzano i consumi: tipologia di prodotto

ATOMIZZATORI, ESSICCATOI, MULINI E PRESSE IDRAULICHE

	Consumi specifici - Termici			Consu	ımi specifici - El	Tipologia di prodotto in	
Macchinario	Gres	Monocottura	Monocottura	Gres	Monocottura	Monocottura	uscita dalle fasi di
IVIACCITITATIO	porcellanato	chiara	rosa	porcellanato	chiara	rosa	lavorazione
	kcal/kg	kcal/kg	kcal/kg	kWh/ton	kWh/ton	kWh/ton	lavorazione
Atomizzatori	314	311	460	7,6	6,0	14,0	barbottina essiccata
Essiccatori	92	101	89	11,6	7,6	6,7	piastrelle essiccate
Mulini ad umido				37,8	16,0	12,5	barbottina umida
Presse				15,0	12,8	10,5	piastrelle pressate

<u>ATT:</u> ai fini del calcolo dell'efficienza termica è necessario tenere in considerazione tutti gli apporti termici utilizzati dall'atomizzatore/essiccatore, ovvero quelli derivanti dalla combustione del gas metano e quelli provenienti dalle varie sezioni di recupero di calore presenti in stabilimento.

FORNI

altre variabili: dimensioni e spessori

	Superficie piastrella		Consumi specifici - Termici		Consumi specifici - Elettrici			Tipologia di prodotto in	
Macchinario	da	2	Gres	Monocottura	Monocottura	Gres	Monocottura	Monocottura rosa	
Iviacciiiiaiio	ua	а	porcellanato	chiara	rosa	porcellanato	chiara	Monocottura rosa	lavorazione
	mq	mq	kcal/kg	kcal/kg	kcal/kg	kWh/ton	kWh/ton	kWh/ton	iavorazione
	0,00	<0,6	500	450	500				
Forni di cottura	0,61	1,00	530	475	530	19,8	16,6	19,8	piastrelle cotte
Form di cottura	1,01	1,40	560	500	560	15,0	10,0	13,0	•
	>1,	,41	590	525	590				(1-2mm)

IL SETTORE DELLA CARTA

Il settore della carta: metodologia per la definizione dei consumi specifici di riferimento

INTERVENTI

Preparazione impasti

- Installazione pulper più efficienti
- Installazione di raffinatori più efficienti

Macchina continua

- Installazione di una cassa vapore
- Utilizzo presse più efficienti
- Installazione di cappe più efficienti

METODOLOGIA

Confronto tra consumo specifico del BREF (2015. tab. 6.25) e delle diagnosi energetiche

- RCF, carta grafica (es. carta giornale): consumo specifico termico pari al valore minimo del BREF (prossimo a quello emerso dalle diagnosi energetiche). Consumo specifico elettrico pari al valore minimo del BREF per analogia (diagnosi non fornivano un dato attendibile);
- RCF, cartoncino con disinchiostrazione: consumo specifico termico ed elettrico pari al valore minimo del BREF (diagnosi non fornivano un dato attendibile);
- RCF, carta per imballaggi senza disinchiostrazione: consumo specifico termico ed elettrico pari al valore medio del BREF (diagnosi fornivano un dato pari al massimo dei valori del BREF);
- RCF, cartone, patinato o non senza disinchiostrazione: consumo specifico termico ed elettrico
 pari al valore delle diagnosi (uguale al valore minimo del BREF);
- Carta grafica (patinata e non) non integrato: consumo specifico termico ed elettrico pari al valore medio del BREF (diagnosi fornivano un dato pari al massimo dei valori del BREF);
- **Tissue non integrato**: consumo specifico termico ed elettrico pari al valore delle diagnosi (uguale al valore minimo del BREF).

Ripartizione percentuale dei consumi in cartiere da BREF (tab. 6.26-6.27)

Il settore della carta: consumi specifici di riferimento

CONSUMI SPECIFICI

	Tipologia di carta	Consumi specifici termici	Consumi specifici elettrici
	Tipologia ai carta	kWh/t	kWh/t
	carta grafica (es. carta giornale)	1.000	900
	cartoncino con disinchiostrazione	1.000	450
RCF	carta per imballaggi senza disinchiostrazione	1.300	400
	cartone, patinato o non senza disinchiostrazione	1.100	400
Carta grafic	a (patinata e non) non integrato	1.500	675
Tissue non inte	egrato	1.650	850

Fasi di processo	% rispetto ai consumi di stabilmento		
	termici	elettrici	
Preparazione dell'impasto	20%	30%	
Fabbricazione del foglio	80%	60%	
Trattamenti superficiali e allestimento	0%	10%	

Ripartizione percentuale dei consumi di stabilimento

Consumi specifici di riferimento dell'intero processo produttivo

INDIVIDUAZIONE DELLA BASELINE

Interventi di revamping

- Consumo <u>ex ante</u> se le performance energetiche dei componenti ex ante risultano superiori o uguali rispetto a quelli standard di mercato;
- Consumo <u>di riferimento</u> se le performance energetiche dei componenti ex ante risultano inferiori rispetto a quelli standard di mercato.

Interventi di installazione ex novo

Consumo di riferimento

IL SETTORE DEL VETRO

Il settore del vetro: interventi ammissibili

- Rifacimento forno
- Installazione di bruciatori ad ossicombustione
- Preriscaldo rottame
- Recupero di calore per la produzione di energia elettrica tramite (ORC)
- Revamping forni di trattamento termico (es. incremento della T di preriscaldo aria bruciatori)

Gli interventi saranno valutati esclusivamente in relazione all'aumento dell'efficienza energetica globale del componente primario (es. forno di fusione, forno di trattamento termico).

Tabella 1 del DM: recupero di calore, qualora non tecnicamente possibile nella situazione *ex ante*

Il settore del vetro: metodologia per la definizione dei consumi specifici di riferimento

Confronto tra dati della banca dati GSE e Guida ENEA (2014).

Per i forni per cui i «consumi specifici ex ante del database GSE risultano ≤ Guida ENEA», il consumo specifico di riferimento è stato posto pari al valor medio tra (a) il consumo specifico della Guida ENEA ed (b) il valore minimo dei consumi specifici ex post presenti nel database GSE.

- a) forni end port per produzione di (1) bottiglie con producibilità 100-400 t/g; (2) flaconeria 50-100 t/g; (3) casalinghi con producibilità < 50 t/g.
- b) forni unit melter per produzione di bottiglie con producibilità 100-300 t/g;
- c) forni side port per produzione di bottiglie 250-600 t/g.

Partendo da tali valori, considerando l'effetto scala sulla producibilità, si sono ricavati i valori mancanti alle diverse producibilità.

- a) forni end port per produzione di (1) bottiglie con producibilità < 100 t/g e > 400 t/g;
 (2) flaconeria con produzione > 100 t/g;
- b) forni unit melter per produzione di bottiglie con producibilità < 100 t/g e > 300 t/g.

Nei restanti casi i valori sono rimasti uguali a quelli della Guida ENEA.

- a) forni di tipo elettrico nel caso di produzione flaconeria e casalinghi;
- b) forni end port per la produzione di casalinghi con producibilità tra 50 e 250 t/g;
- c) forni side port per la produzione di vetro piano con producibilità > 400 t/g.

Nel caso di produzione di **filati e tubi**, non avendo dati sufficienti nel database, si è deciso di non inserire i valori di consumo di riferimento in tabella.

Il settore del vetro: consumi specifici di riferimento

CONSUMI SPECIFICI

Tipologia di forno	Bottiglie [GJ/t]	Flaconeria [GJ/t]	Casalingo [GJ/t]	Piano [GJ/t]
Elettrico				
< 50 t/g		8,6	8,6	
50-100 t/g		7,9	7,8	
End port				
< 50 t/g			8	
50-100 t/g	5,2	5,6	6,4	
100-250 t/g	4,5	5,4	4,6	
250-400 t/g	3,9			
>400 t/g	3,7			
Unit melter				
50-100 t/g	5,5			
100-300 t/g	5	5,5		
300-400 t/g	4,8			
Side port				
250-400 t/g	4,7			
400-600 t/g	4,5			6,7
=600 t/g				6,2

I dati riportati in tabella sono relativi al consumo di energia primaria utilizzando il 50% di rottame

IL SETTORE DELLA PLASTICA

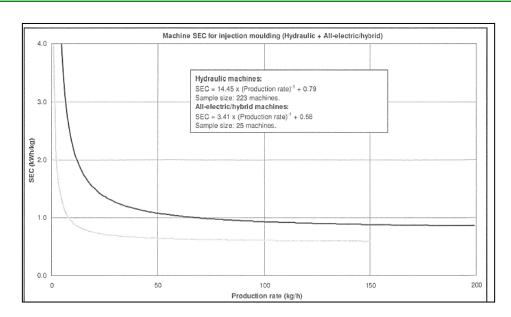
Il settore della plastica: metodologia per la definizione dei consumi specifici di riferimento

INTERVENTI

Sostituzione/installazione di:

- presse dotate di azionamenti più efficienti;
- estrusori dotati di azionamenti più efficienti.

Non sono state prese in considerazione le ulteriori fasi di processo in quanto l'elevata eterogeneità dei processi e prodotti e la scarsità dei dati a disposizione nel database non hanno permesso una ricostruzione dei dati affidabili.


METODOLOGIA

- Analisi banca dati GSE: riscontrata una elevata variazione dei consumi attribuibile a fattori inerenti alle differenti lavorazioni, ovvero la tipologia e le caratteristiche del prodotto, la producibilità oraria, le taglie dei macchinari, la durata del ciclo di lavorazione, etc.
- Confronto con dati del documento "Energy Management in Plastics Processing", 2013, R. Kent.

Il settore della plastica: consumi specifici di riferimento

Stampaggio per iniezione

$$C_{\text{EX POST}} = \begin{cases} 0 < P \le 50; & \text{SEC} \left[\frac{\text{kWh}}{\text{kg}} \right] = \frac{3,41}{\text{Production rate}} + 0,58 \\ \\ P > 50; & \text{SEC} = 0,58 \end{cases}$$

Formatura per estrusione – profili

$$C_{\text{EX POST}} = \begin{cases} 0 < P \le 50; \text{ SEC } \left[\frac{\text{kWh}}{\text{kg}} \right] = \frac{2,31}{\text{Production rate}} + 0,38 \\ \\ P > 50; \text{SEC} = 0,38 \end{cases}$$

Formatura per estrusione – film in bolla

$$C_{\text{EX POST}} = \begin{cases} 0 < P \le 50; \text{ SEC } \left[\frac{\text{kWh}}{\text{kg}} \right] = \frac{29,61}{\text{Production rate}} + 0,29 \\ \\ P > 50; SEC = 0,29 \end{cases}$$

PRODUZIONE DI ENERGIA TERMICA E FRIGORIFERA

Produzione en. termica/frigo: impostazione della guida e metodologia

IMPOSTAZIONE

Descrizione, condizioni di ammissibilità, rendimenti, variabili.

Tecnologie

- 1. Impianti di produzione di energia frigorifera
 - a) Sistemi a compressione (elettrici e a gas)
 - b) Sistemi ad assorbimento (elettrici e a gas)
 - c) Sistemi free-cooling (diretto ad aria; indiretto: dry cooler, acqua di falda, torri evaporative)
- 2. Impianti di produzione di energia termica
 - a) Generatori di calore (acqua calda, vapore, aria calda, olio diatermico)
 - b) Pompe di calore (elettrica, a gas, polivalente)
- 3. Individuazione della soluzione di baseline

METODOLOGIA

- **Sistemi a compressione (frigo e PdC):** i rendimenti sono quelli del D.lgs. 28/2011, al netto di quelli aria-acqua e acqua-acqua ottenuti a partire dai dati presenti sul sito Eurovent.
- Sistemi ad assorbimento: riferimenti ANIMA
- Generatori di calore:
 - acqua calda: DM 26 giugno 2015 e regolamento 2015/2402;
 - aria calda: schede tecniche
 - vapore e acqua surriscaldata: database GSE
 - olio diatermico: schede tecniche

Produzione en. termica/frigo: sistemi a compressione elettrici e a gas

Condizioni di ammissibilità

Requisiti minimi prescritti dall'Allegato 2, punto 3 del D.Lgs. 28/2011. Il rispetto di tali requisiti deve essere attestato da prove effettuate secondo le metodologie riportate dal medesimo Allegato 2, da un laboratorio indipendente e accreditato alla norma UNI EN ISO/IEC 17025.

Valori di EER di riferimento

Ambiente		Gruppi frigo a compressione							
						EER			
Esterno	Interno	Ambiente esterno (°C)	Ambiente interno (°C)		Interv	alli di poten	za (kWfrig)		
				20-50	51-250	251-500	501-1000	>1000	
	Aria		Bulbo secco all'entrata: 27			3,4**	•	•	
Aria	Alla	Bulbo secco all'entrata: 35	Bulbo umido all'entrata: 19			3,4			
Alla	Acquia	Bulbo umido all'entrata: 24	Temperatura entrata: 12	20*	2,8 * 2,9 *	2,9 *	3,0 *	3,2 *	
	Acqua		Temperatura uscita: 7	2,0			3,0	3,2	
	Aria		Bulbo secco all'entrata: 27		4,4**				
Acqua	Alla	Temperatura entrata: 30	Bulbo umido all'entrata: 19		- ب- ب- ا				
Acqua	A cours	Temperatura uscita: 35	Temperatura entrata: 12	3,9 *	4,0 *	4,4 *	4,8 *	4,9*	
	Acqua		Temperatura uscita: 7	3,9	4,0	4,4	4,0	4,9	
	Aria		Bulbo secco all'entrata: 27			4,4 **			
Calamaia	Aria	Temperatura entrata: 30	Bulbo umido all'entrata: 19		4,4				
Salamoia	Λοσιιο	Temperatura uscita: 35	Temperatura entrata: 23			1 1**		•	
	Acqua		Temperatura uscita: 18		4,4**				

^{*} Elaborazione GSE su dati Eurovent

Per **gruppi frigo con motore endotermico a gas** il valore di EER di riferimento (o GUE) è pari a 0,6 (alle condizioni definite dalla EN 12309:2015).

^{**} Fonte D.Lgs. 28/2011

Produzione en. termica/frigo: sistemi a compressione elettrici e a gas

Variabili di processo

Risparmio =
$$\left(\frac{1}{\text{EER}_{\text{baseline}*K}} - \frac{1}{\text{EER}_{\text{expost}}}\right) * E_{\text{frigo}}$$

EERbaseline

Massimo tra EERstandard e quello della soluzione ex ante EERscheda tecnica exante confrontati a parità di condizioni operative

$$\begin{split} \text{EER}_{\text{baseline}} &= \text{max} \left(\text{EER}_{\text{standard}}; \text{EER}_{\text{scheda tecnica exante}} * \frac{\text{EER}_{\text{carnot standard}}}{\text{EER}_{\text{carnot scheda tecnica exante}}} \right) \\ &- \text{EER}_{\text{carnot standard}} = \frac{T_{\text{e_standard}}}{T_{\text{c_standard}} - T_{\text{e_standard}}} \\ &- \text{EER}_{\text{carnot scheda tecnica exante}} = \frac{T_{\text{e_scheda_tecnica_exante}}}{T_{\text{c_scheda_tecnica_exante}} - T_{\text{e_scheda_tecnica_exante}}} \end{split}$$

Κ

Coefficiente correttivo che tiene conto delle effettive temperature delle sorgenti

$$K_{EER} = \frac{EER_{carnot\;expost}}{EER_{carnot\;baseline}} \\ - EER_{carnot\;expost} = \frac{T_{e_expost}}{T_{c_expost} - T_{e_expost}} \\ - EER_{carnot\;baseline} = EER_{carnot\;standard}$$

EERexpost

Valore orario misurato nelle condizioni ex post

Produzione en. termica/frigo: sistemi ad assorbimento

Condizioni di ammissibilità

Rispettare i requisiti minimi prescritti dall'Allegato 2, punto 3 del D.Lgs. 28/2011, ovvero un EER superiore a 0,6 (alle condizioni definite dalla UNI EN 12309-2:2008). Laboratorio indipendente e accreditato alla norma UNI EN ISO/IEC 17025.

Valori di EER di riferimento

EER				
Singolo effetto	Doppio effetto			
0,6	1,2			

Variabili di processo

Risparmio =
$$\left(\frac{1}{\text{EER}_{\text{baseline}*K}} - \frac{1}{\text{EER}_{\text{expost}}}\right) * E_{\text{frigo}}$$

In Tabella 3 è riportata l'andamento del coefficiente K

Produzione en. termica/frigo: free cooling

Le possibili soluzioni tecnologiche sono:

- a) il free cooling diretto ad aria;
- b) il free cooling indiretto con **dry cooler**, ovvero aerotermi che sfruttano direttamente l'aria esterna come fluido secondario, ma esistono anche soluzioni dotate di dispositivo adiabatico, ovvero di un sistema di nebulizzazione che sfrutta l'ulteriore salto termico dovuto all'evaporazione d'acqua;
- c) il free cooling indiretto ad acqua di falda;
- d) il free cooling indiretto con torri evaporative.

Tutte le soluzioni free cooling non generano risparmi addizionali, ad eccezione di:

- a) sistemi free cooler ad aria con raffreddamento adiabatico che sfrutta l'acqua presente in un circuito chiuso, garantendo un ridotto consumo di acqua rispetto alle torri evaporative;
- b) utilizzo di acqua di falda solo nel caso la realizzazione del sistema di captazione risulta tecnicamente complesso.

Produzione en. termica/frigo: generatori di calore

Condizioni di ammissibilità

Nella tabella seguente sono riportate i limiti normativi per caldaie ad **acqua calda** alimentate a **combustibili gassosi e liquidi**, impiegate per la **climatizzazione ambienti**, o contestuale **climatizzazione ambienti e produzione di acqua calda sanitaria**, secondo quanto previsto dal Regolamento 813/2013, nonché Appendice B all'Allegato 1 del D.M. 26/06/15.

Potenza nominale	Rendimenti [%]		
(Pn) [kW]	100% del carico	30% del carico	
≤ 400	90 + 2* log (Pn)	94	
>400	95,2	-	

Rendimento di riferimento

	F	Fluido termovettore di interfaccia con l'utenza			
	Veans calds	Aria calda	Vapore, acqua	Olio diatermico	
	Acqua calda	Alla Calua	surriscaldata		
Aree metanizzate	95%	91%	92%	88%/90%	
Aree non metanizzate	90%	91/0	9270		

Impianti di produzione di energia termica: pompe di calore

Condizioni di ammissibilità

È necessario rispettare i requisiti minimi prescritti dall'Allegato 2, punto 3 del D.Lgs. 28/2011 (laboratorio indipendente e accreditato alla norma UNI EN ISO/IEC 17025).

Rendimento di riferimento

PdC elettriche

	Ambie	nto		Pompe Elettriche					
	Ambie	nte	Ri	scaldamento		Raffreddamento			
	Esterno	Interno	Ambiente esterno (°C)	Ambiente interno (°C)	COP	Ambiente esterno (°C)	Ambiente interno (°C)	EER	
		Aria	Bulbo secco all'entrata: 7	Bulbo secco all'entrata: 20 Bulbo umido all'entrata: 15	3,9 **	Bulbo secco all'entrata: 35	Bulbo secco all'entrata: 27 Bulbo umido all'entrata: 19	3,4 **	
	Aria	Acqua	Bulbo umido all'entrata: 6	Temperatura entrata: 30 Temperatura uscita: 35	4,1 **	Bulbo umido all'entrata: 24	Temperatura entrata: 23 Temperatura uscita: 18	3,8 **	
		Aria	Temperatura entrata: 15 Temperatura uscita: 12	Bulbo secco all'entrata: 20 Bulbo umido all'entrata: 15	4,7 **		Bulbo secco all'entrata: 27 Bulbo umido all'entrata: 19	4,4 **	
	Acqua	Acqua	Temperatura entrata: 10	Temperatura entrata: 30 Temperatura uscita: 35	5,7 *	Temperatura entrata: 30	Temperatura entrata: 23 Temperatura uscita: 18	5,9 *	
	Salamoia	Aria	Temperatura entrata: 0	Bulbo secco all'entrata: 20 Bulbo umido all'entrata: 15	4,3 **	Temperatura uscita: 35	Bulbo secco all'entrata: 27 Bulbo umido all'entrata: 19	4,4 **	
		Acqua	Temperatura entrata: 0	Temperatura entrata: 30 Temperatura uscita: 35	4,3 **		Temperatura entrata: 23 Temperatura uscita: 18	4,4 **	

^{*} Elaborazione GSE su dati Eurovent.

PdC gas

ı		Ambiente	Pompe Elettriche - Gruppi frigo a compressione				
	Esterno	Interno	Ambiente esterno (°C)	Ambiente interno (°C)	СОР		
		Aria	Bulbo secco all'entrata: 7	Bulbo secco all'entrata: 20	1,46		
	Aria		Bulbo umido all'entrata: 6	Temperatura entrata: 30*	1,38		
4	Acqua	Aria	Temperatura entrata: 10	Bulbo secco all'entrata: 20	1,60		
	Acqua	Acqua	Temperatura entrata: 10	Temperatura entrata: 30*	1,56		
	Salamonia	Aria	Temperatura entrata: 0	Bulbo secco all'entrata: 20	1,59		
	JaiailiUllia	Acqua	Temperatura entrata: 0	Temperatura entrata: 30*	1,47		

PdC Polivalenti Valore di riferimento è pari a PdC polivalente avente un TER (*Total Efficiency Ratio*) pari alla media pesata tra COP e l'EER di baseline, in funzione dell'energia termica e frigorifera prodotta.

^{**} D.Lgs. 28/2011

Impianti di produzione di energia termica: individuazione baseline

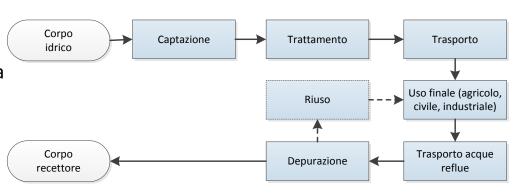
Tipo di energia	Ambito	Applicazione	Situazione ex ante	Situazione ex post	Situazione di riferimento
Termica	Civile/terziario - Industriale	Climatizzazione-ACS, Processo	Caldaia	PdC	da verificare*
Termica	Teleriscaldamento		Caldaia	PdC	da verificare*
Termica-Frigorifera	Civile/terziario - Industriale	Climatizzazione-ACS, Processo	Caldaia + GFC	PdC polivalente	da verificare*
Frigorifera	Civile/terziario - Industriale	Climatizzazione, Processo	GFA diretto	Free cooling aria + raffreddamento adiabatico	da verificare*
Frigorifera	Civile/terziario - Industriale	Climatizzazione, Processo	GFC aria	GFC acqua	GF acqua
Frigorifera	Civile/terziario - Industriale	Climatizzazione, Processo	GFC	GFA diretto	da verificare**
Frigorifera	Civile/terziario - Industriale	Climatizzazione, Processo	GFC	GFA a recupero	GFC
Frigorifera	Civile/terziario - Industriale	Climatizzazione, Processo	GFC	Free cooling acqua	da verificare*
Frigorifera	Civile/terziario - Industriale	Climatizzazione, Processo	GFC	Free cooling aria	Non addizionale
Frigorifera	Civile/terziario - Industriale	Climatizzazione, Processo	GFC	GFC con free cooling	Non addizionale
Frigorifera	Industriale	Processo	GFC	Torre di raffreddamento	Non addizionale
Frigorifera	Industriale	Processo	Torre di raffreddamento	Free cooling aria/acqua	Non addizionale

^{*}In base alle temperatura di mandata, alla temperature della sorgente fredda e alla complessità impiantistica.

^{**}In base alla tipologia di applicazione.

Nomenclatura	Definizione
GFA diretto	Gruppo frigo alimetato a metano, GPL o biomasse
GFA a recupero	Gruppo frigo ad assorbimento da energia termica recuperata
GFC	Gruppo frigo a compressione
GFC con free cooling	Gruppo frigo con free cooling incorporato
Free cooling aria/acqua	pompa per pozzo, ventilatore per aria esterna
PdC	Pompa di calore
PdC polivalente	Pompa di calore che produce simultaneamente calore ed energia frigorifera

IL SERVIZIO IDRICO INTEGRATO



Il Servizio Idrico Integrato: interventi ammissibili

Interventi

- Impianti di depurazione:
 - impianti di generazione di aria compressa ed utilizzo di ossigeno
 - sistemi di diffusione dell'aria compressa
 - o mixer
- Acquedotti:
 - o riduzione delle perdite di rete
 - o gestione ottimale delle pressioni di rete
 - o re-layout delle reti
- Trasversali: motori

- Non sono ammissibili interventi che hanno richiesto altri incentivi
- Sviluppi regolatori da parte dell'AEEGSI sul tema (ad esempio qualità tecnica)

Variabili

- captazione e trattamento delle acque: tipologia di corpo idrico (superficiale o sotterraneo) e caratteristiche degli stessi (caratteristiche chimico-fisiche dell'acqua, portate dell'acqua, profondità delle falde, etc.);
- trasporto delle acque trattate e dei reflui civili e industriali: conformazione del territorio e caratteristiche delle reti, delle utenze o degli impianti di depurazione;
- depurazione dei reflui civili/industriali: caratteristiche dei reflui da trattare e dei corpi ricettivi di scarico, nonché le portate trattate.

Definizione dei consumi di riferimento: approccio metodologico (1/3)

IMPIANTI DI DEPURAZIONE

1. Impianti di generazione di aria compressa

- a) <u>Compressori con motori efficienti</u>: a prescindere dalla tipologia (lobi, vite, centrifughi, etc.) il programma di misura dovrà prevedere la differenza di rendimento elettrico tra il motore ex post e quello di baseline (IE3, Reg. CE 640/2009) ai diversi regimi di funzionamento.
- b) <u>Utilizzo di ossigeno puro in sostituzione dell'aria</u>: il programma di misura dovrà prevedere la differenza di efficienza del processo in termini di kWh_{el}/kg_{COD rimosso} (o altri indici di inquinanti) tra la soluzione di baseline e la situazione ex post e deve contabilizzare l'extra consumo legato alla produzione di ossigeno.
- c) <u>Compressori con motori efficienti e sistema di controllo</u>: il programma di misura dovrà essere come 1.b, al netto dell'ossigeno

2. Impianti di depurazione: sistemi di diffusione dell'aria compressa

- La soluzione standard è rappresentata da sistemi a bolli fini
- Il programma di misura dovrà essere come 1.b, al netto dell'ossigeno

3. Impianti di depurazione: mixer

a) <u>Mixer con motori efficienti</u>: a prescindere dalla tipologia (eiezione aria/acqua o miscelazione) il programma di misura dovrà essere come 1.a

Definizione dei consumi di riferimento: approccio metodologico (2/3)

ACQUEDOTTI

1. Riduzione delle perdite di rete: alcune tipologie di intervento non si connotano come effettivi interventi di efficienza energetica, ma come interventi di normale manutenzione ordinaria e straordinaria, salvo interventi sostanziali sull'intera rete che permettono di raggiungere valori di perdite di rete prossimi a quelli fisiologici

ATT: è necessario avere i piani di di intervento, i bilanci ed i seguenti indicatori:

- per le perdite reali: indicatori di perdita indicati da All.B alla Del. 89/17 della AEEGSI, nonché ILI (Infrastructure Leakage Index, ILI= CARL/UARL), ELE (Economic Level of Leakage):
 - o del singolo sistema idrico,
 - aggregati per Enti di governo d'ambito (EGA),
 - o aggregati per Regione;
- per perdite apparanti: indicatori di perdita indicati da All.B alla Del. 89/17 della AEEGSI.

2. Gestione ottimale delle pressioni di rete

Valvole di regolazione, inverter su pompe, nonché il loro ridimensionamento, sistemi di telecontrollo delle pressioni in specifici punti, modellizzazione dei comportamenti della rete, distrettualizzazione per pressioni → misure comportamentali

Definizione dei consumi di riferimento: approccio metodologico (3/3)

ACQUEDOTTI

3. Re-layout delle reti

- Interventi: Interconnessioni tra condotte, inserimento-eliminazione di serbatoi
- Definizione del consumo di baseline: riferirsi alla situazione ex ante, opportunamente normalizzata nel caso in cui l'efficienza dei componenti presenti nella situazione ex ante sia inferiore a quella delle tecnologie standard di mercato.
- Cosa presentare:
 - 1. una descrizione puntuale dei singoli componenti con indicazione della loro efficienza:
 - a) per quelli presenti nella situazione ex ante;
 - b) per quelli standard di mercato;
 - c) per quelli installati nella situazione ex post;
 - descrizione della configurazione impiantistica e un bilancio di massa-energia (con indicazione anche delle prevalenze):
 - a) della rete nella situazione ex ante;
 - b) di una possibile configurazione di riferimento alternativa a quella ex post;
 - c) della situazione ex post.

GRAZIE PER L'ATTENZIONE!

Contatti: tavolitecnicicb@gse.it